
INTEGRATIONWITHCONTROLLOGIXPROGRAMMABLE
AUTOMATIONCONTROLLERS (PACS)USINGETHERNET/IP

Concepts and Principles of EtherNet/IP Communicationwith
Rockwell Automation Products

Authors: Vivek Hajarnavis, Richard Piggin, Ray Romito, Viktor Schiffer
Version 1.0



Contents

Introduction 3

Explicit Messaging 3

Use of CIP Routing 4

Data Organization in the Controller 4

Outbound Explicit Messages 5

Inbound Explicit Messages 7

Explicit Message Response Times 8

I/O Messaging 8

Further design considerations 18

EtherNet/IP communication with Add-On Instructions 19

Introduction – Why Add-On Instructions? 20

Generic benefits of Add-On Instructions 22

Creating an AOI 24

Steps to building an AOI 26

Integration with FactoryTalk View software 27

Appendix A – Accessing Tags in a Logix Controller 29

Glossary 30

References 31

Developer Resources 32

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

3



Introduction

Many Rockwell Automation products support communication via EtherNet/IP™;
however, the type of communication it supports and the details of the communication
vary from product to product. The CIP™ Networks Library from ODVA (Open
DeviceNet Vendor Association) provides detailed information about EtherNet/IP and
the specifications that define Common Industrial Protocol (CIP) as well as its adaptation
to various network protocols. What is commonly referred to as “the EtherNet/IP
Specification” comprises two volumes (see references [8] and [9]) of this seven-volume
library.

All EtherNet/IP-enabled products support the minimum explicit messaging server
functionality by allowing explicit messaging access to ID Object and other required
objects. Although useful to identify a product, this communication is not the core
requirement of an industrial application.

Several guide documents (see references [1] through [6]) detail the communication with
Rockwell Automation products. This document does not aim to replace these guides, but
intends to highlight the communication concepts.

For more information about the Common Industrial Protocol and EtherNet/IP, please
refer to the the CIP eTraining ClassroomTM [10], an instructional CD designed to help
developers understand and apply the fundamentals of the Common Industrial Protocol.
The CD provides a cost-effective alternative to traditional training and can assist in
product development and reducing time to market. For an introduction to EtherNet/IP
interface development, the ODVA guide to EtherNet/IP development [11] provides a
complete background to EtherNet/IP along with steps to follow for a successful
development.

Explicit Messaging
Before the CIP concepts were made public, a range of legacy products were developed.
Although these products are true explicit messaging servers (and sometimes clients as
well), they use special, older protocol mechanisms such as PCCC (see [5]), meaning they
communicate through a vendor-specific object using object-specific services. The data
portion of the explicit message contains additional address information.

Newer products, especially those within the Logix family, are explicit messaging servers
with fully integrated CIP principles. In order to leverage their capabilities, several
product details need to be understood. CIP is the preferred method of communicating
to these products.

The Logix family also supports the PCCC encapsulated messages to access controller
data organized in PLC-5® style. Please refer to the Logix Data Access manual for details
about this communication method.

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

4

Introduction

Explicit Messaging



Use of CIP Routing

Figure 1 General Principle of a Logix System

As shown in Figure 1, a Logix system is modular in nature, with modules sitting in a
physical and/or logical chassis, also called a “rack.” Modules in a rack communicate using
CIP as implemented on a backplane bus. Network communications modules (e.g.
DeviceNet™, ControlNet™ or EtherNet/IP) allow processor modules in the rack to
communicate with the outside world via CIP networks.

Communication modules are not an integral part of any processors (at least not
logically), meaning that all communication from the outside world into a processor, and
vice versa, must use the routing principles built into CIP. These principles state that
processors should message across routed connections or through the Unconnected Send
service, which carries at least one port segment. To communicate with a Logix system, a
routed explicit message (Unconnected Send or Forward Open) must contain a port
segment identifying the backplane port (1) and the slot number of the module to be
reached. All typical CIP principles apply inside the individual modules of the Logix
system.

Data Organization in the Controller
Logix processors store and organize all data relevant to the outside world in tags whose
user-defined names have meaning in the control application.

Tags have the following properties:
• A name with up to 40 characters

One of two scopes:
• Controller (i.e. global) scope is accessible by external means
• Program (i.e. local) scope is not accessible by external means

A defined data type for organizational purposes:
• Atomic
• BOOL, SINT, INT, DINT, REAL
• These types follow the data definitions in CIP; note that Logix does not support all
CIP-defined types. See Appendix C of reference [8] for details
• Structures
• This grouping of atomic data items functions as a single unit for a specific purpose;

structures can be predefined (eg: TIMER, COUNTER, CONTROL) or user-
defined (eg: UDTs)

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

5

Use of CIP Routing

Data Organization
in the Controller



Arrays
• A sequence of elements of the same data type can be one, two or three dimensional;

array members can be atomic or structures

The details of creating and using tags are beyond the scope of this document. Please see
reference [7] for further details. For information about how to access tags, please read the
chapter entitled, “Appendix A -- Accessing Tags in a Logix Controller.”

Outbound Explicit Messages
The MSG (message) instruction handles all Explicit messaging initiated by a Logix
Controller program. To utilize connected or unconnected messaging, the user configures
MSG instruction. A later section will address how connected messaging can be “cached”
to keep the connection open.

Figure 2 Logix5000™ MSG Instruction Message Configuration

CIP Services that are directed towards data structured into objects can be chosen by
selecting “CIP generic” messaging. A user can select from several predefined standard
services or enter a valid service code in the “Service Type” field. To access tag-oriented
data, select the “CIP Data Table Read” or “CIP Data Table Write” services. Devices that
support these vendor-specific services will respond to commands as explained in the
chapter, “Appendix A – Accessing Tags in a Logix Controller.”

Logix uses default timeout settings that can be changed by the user. These settings are
(Please note that items in italics are members of the tag structure for the MSG
instruction):
• Approximately 30 seconds for connected explicit messages (ConnectionRate x

2^TimeoutMultiplier x 4); please note that ConnectionRate is the RPI in
microseconds

Arrays

Outbound Explicit
Messages

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

6



• Approximately 30 seconds for unconnected explicit messages (UnconnectedTimeout)
• Approximately 30 seconds for Forward Open requests (UnconnectedTimeout)

Any communication with another EtherNet/IP product initiated by Logix utilizes the
List Services encapsulation command. If a device does not respond to this service
(support of List Services is required, per the EtherNet/IP specification), Logix will not
proceed with the communication.

Logix EtherNet/IP interfaces automatically create and manage TCP connections and
CIP encapsulation sessions. The user has no direct influence on this process. When an
interface establishes a TCP connection and CIP encapsulation session, it will continue
until it carries no CIP connection or has carried no CIP traffic for 125 seconds. The
number of supported TCP connections depends on the interface module used.

Figure 3 Logix5000 MSG Instruction Communication Configuration

When using the MSG instruction to initiate a connected message, the user may enable
the Cache Connection option, which keeps the CIP connection open indefinitely. If a
cached connection is inactive for a period equal to the RPI (ConnectionRate) the
controller repeats the last message. The repeated message has an unchanged sequence
number, which does not affect the application.

Logix controllers have a limit of 32 cached connections. If it exceeds this limit, the
controller closes the least recently used connection.

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

Outbound Explicit
Messages

7



If the user does not enable Cache Connection, the connection closes immediately. An
example of this sequence is: ForwardOpen Request, ForwardOpen Response, Explicit
Request, Explicit Response, ForwardClose Request, ForwardClose Response. This
sequence is repeated each time the MSG rung goes from false to true.

Inbound Explicit Messages
To send explicit messages to a Logix system, connected messaging is recommended
instead of unconnected messaging. Unconnected messaging resources are limited and can
be come overwhelmed with activity. When this happens, response times become very
long and the user application can suffer as a result.

Users should also reuse TCP connections and Encapsulation sessions whenever possible
because the Logix server sequentially executes messages in the order received. The client
sequentially sends messages using a single connection rather than opening and closing
separate connections for each new message. If a message request times out for example,
re-try the CIP request. If it fails again, then consider if the session or TCP connection
needs to be torn down and rebuilt.

Incoming explicit messages are processed by the message router object (Class ID 0x02).
The message router locates the target class code of the service based on the EPATH or
ANSI Extended Symbolic Segment, and gives the message to the appropriate object class
for processing. See the section “Appendix A -- Accessing Tags in a Logix Controller” for a
brief description of the explicit message format.

To close Explicit messaging connections, use the ForwardClose service request instead of
letting the connection time out. Too many open, unused connections could result in the
Logix system – like any other system – unexpectedly running out of connection buffers.

If a client fails to receive a response to a CIP message request, do not automatically close
the EIP TCP session (FIN). Closing the session will cause the EtherNet/IP network
interface card to immediately abort the session, which takes several seconds to reopen.
Attempt CIP-level retries first. If that does not resolve the issue, close and reopen the
CIP connection and try the explicit message request again before closing and reopening a
new TCP session.

Explicit messaging connections do not perform as well as I/O data messaging. To yield a
timeout of approximately five seconds, an inbound explicit message connection should
have an RPI no lower than approximately 1.25 seconds and a connection timeout
multiplier set to at least 4x. Although faster RPIs and shorter timeouts may work in
ideal situations, heavily loaded systems require longer timeouts.

Explicit Message Response Times
Messages get lost or arrive later than expected for myriad reasons. Noise and other
network disturbances can cause lost messages, while time-consuming tasks and servers,
too preoccupied with other tasks to process incoming requests, result in slow message
delivery. If a reply is not received within the RPI time, resend the message using the same

Inbound Explicit Messages

Explicit Message
Response Times

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

8



sequence count. Continue resending at the RPI interval until the server receives the
response or the client’s watchdog times out. If this approach does not work, the client can
assume the request has been lost. The client should report this to its application and issue
a ForwardClose to free up the reserved resources on the server side.

I/O Message
I/O messaging with a Logix controller can be accomplished in several ways and
depends on the version of the controller and RSLogix® 5000 software. In two of the I/O
messaging relationships, the controller originates the connection by sending the messages
to establish the I/O connection. The controller acts as a target in the third I/O
messaging option.

For Version 16 or later, the following options exist:

• I/O Communications via Device Profiles

Add the device to the controller’s I/O tree using either the ETHERNET-MODULE or
the ETHERNET-BRIDGE profiles in the RSLogix 5000 software so the controller will
open a bidirectional I/O connection with the device. For details, please refer to the
section “I/O Exchange Using Logix Device Profiles” below. This type of communications
can be combined with either of the next two items, if the device has the capability to
consume or produce tags.

• Consume Tags

Add the device to the controller’s I/O tree using the ETHERNET-MODULE profile
and configure Consume Tags in Logix to use this as the data source. Logix will then open
a unidirectional I/O connection using a CIP Extended ANSI Symbolic Segment in the
connection path. For more information, please refer to the explanation of tag I/O
exchanges below.

• Produce Tags

If the device can open a connection using a CIP Extended ANSI Symbolic Segment in
the connection path, it can request that the Logix controller produce a tag. Only tags
configured as “Produced” – a selection made during tag creation – can be connected to.
The device does not need to be in the I/O tree of the Logix controller. For further
explanation, please refer to the below section about tag I/O exchanges.

I/O Exchange Using Logix Device Profiles
I/O data exchange between Logix and networked devices typically use the controller’s
I/O tree to organize the devices according to how they connect. For example, devices
may connect in the local chassis, via a network interface, or in another manner. The
controller has device profiles for items in the I/O tree to manage the communications
with the device (Figure 4). These device profiles differ from the CIP Device Profiles.

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

I/O Message

I/O Exchange Using Logix
Device Profilles

9



Figure 4 Logix5000 I/O Tree

When connecting third-party EtherNet/IP devices to the I/O tree of a Logix controller,
the user can choose either the ETHERNET-MODULE profile or ETHERNET-
BRIDGE profile. The ETHERNET-MODULE profile is used for devices directly on
EtherNet/IP. The ETHERNET-BRIDGE profile is used for devices with a network
adapter and a modular CIP backplane. The controller will individually share real-time
data with each slot in the CIP backplane using a single connection for each slot.

ETHERNET-Module Profile
Configuring the ETHERNET-MODULE profile offers several options for real time
data communications through an I/O connection (Figure 5).

When choosing the communications format, selecting the proper data type assures the
device’s tags correctly represent the data.

The following list outlines the software’s only available choices.

Exclusive Owner connections with eight communications format options:

Data – DINT Data – DINT – with Status

Data – INT Data – INT – with Status

Data – SINT Data – SINT – with Status

Data – REAL Data – REAL – with Status

I/O Exchange Using Logix
Device Profilles

ETHERNET-Module Profile

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

10



Input Only connections with eight communications format options:

Input Data – DINT Input Data – DINT – with Status

Input Data – INT Input Data – INT – with Status

Input Data – SINT Data - SINT – with Status

Input Data – REAL Data - REAL – with Status

“None” communications format:
This format does not establish any connection at all. Devices using this format have an
explicit message relationship with the controller and/or share data with the controller
through produced/consumed tags. For more details, refer to the tag I/O data exchanges
section below.

The above connection formats identified as “– with Status” have two connections
opened with the target; one for the I/O data, and another for the Input Only, “Status”
connection. By using the latter connection, the controller receives status information or
additional input data from the target device. The target device requires a second set of
different connection points – one for the status data, one for the heartbeat – in order to
utilize this type of communications format. If the user specifies a configuration size, the
first ForwardOpen will contain the configuration data segment. Since it cannot be
guaranteed which connection will open first, the device maker should accept the
configuration data in either ForwardOpen request.

Please note that Input Only and Listen Only connections appear the same from the
controller’s point of view because the target side distinguishes the behavior.

ETHERNET-Module Connection Path
The ForwardOpen request parameters include the connection path. It consists of
the following elements in the order in which they are sent: electronic key segment,
application path, optional port segment and optional data segment.

ETHERNET-Module Electronic Key
Electronic Key segments contain the vendor ID, Device Type, product code and
major/minor revision of the expected target device. Some or all of these fields can be set
for “don’t care.” Before accepting the connection, the target verifies that the identity
information matches the electronic key criteria. The ETHERNET-MODULE profile
sends an Electronic Key with fields set for “don’t care” (zeros).

ETHERNET-Module Application Path
The Application Path consists of four items: the Class ID, Configuration Instance,
Consume Connection Point and Produce Connection Point. The ControlLogix®
controller sends all four items with the ETHERNET-MODULE profile. The Class ID
value is always 0x04, which refers to the Assembly object class. The user enters the
remaining fields in the module properties screen shown below using values from the
device’s user manual. For devices that support multiple connections, each connection
type has one set of numbers. For example, if the product supports an Exclusive Owner

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

ETHERNET-Module Profile

ETHERNET-Module
Connection Path

ETHERNET-Module
Electronic Key

ETHERNET-Module
Application Path

11



and an Input Only connection, the Produce Connection Point for each connection can
be the same value, likewise for the Configuration Instance. But the Consume
Connection Point for each connection must be different. Mismatches between
Connection Point number and size prevent the connection from opening.

Application Path encoding appears in the form of four logical segments. For example, 20
04 24 03 2C 64 2C 65 corresponds to the Connection Parameter values entered in the
new module properties screen shown in Figure 5.

Figure 5 Configuring I/O connections in Logix5000 software

Since RSLogix 5000 software does not read information from device EDS files, the user
must choose the heartbeat connection point (assembly object instance) provided by the
target device manufacturer. This connection point distinguishes Input Data, Output
Data, Input Only and Listen Only connections in instances where the target device
supports multiple connection types.

Connection Data Sizes
The data sizes entered in this screen determine the size of the data in the packets on the
wire. However, the ForwardOpen request includes one or two other protocol transport
items that are unnoticeable in this view.

To determine the value in bytes of the ForwardOpen, consider the data size specified in
the Comm Format field. In Figure 5 above, the data type is DINT, which is 4 bytes long,
so the Input data size is (4 * 4) or 16 bytes and the Output data size is (4 * 2) or 8 bytes.
All I/O data packets also include a two-byte-long sequence count, which adds two bytes
to those totals. Finally, output data contains a 32-bit Run/Idle header that conveys
controller mode (Run/Program) to the target. This adds four bytes to the output size.
This yields the final values of 18-bytes for Input data and 14-bytes for Output data.
These values are used in the ForwardOpen T-O Size and O-T Size fields, respectively.

ETHERNET-Module
Application Path

Connection Data Sizes

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

12



Configuration Path
Product manufacturers are strongly encouraged to support a Configuration Assembly in
their products, and to accept configuration data in a Data Segment appended to the
ForwardOpen service request. Doing this allows devices to be automatically reconfigured
when being replaced. Providing automatic device configuration on replacement results
in efficient system operation, improved user experience and if a device fails, minimal
downtime.

All Comm Format selections include Configuration Instance and Size fields. If the device
does not support this feature, enter “zero” in the configuration box. This configuration
will have no configuration data at the end of the ForwardOpen Request. If the target
device supports receiving configuration data via the ForwardOpen request, then the
expected Data Segment size can be entered here. The controller creates a 400-byte tag in
user memory, called “C” suffix data, for nonzero size entries. For more information about
“C” suffix data, please refer to the Controller Tags section of this document.

Based on information from the device’s manual, the user can enter the configuration data
in this tag. A Data Segment (Logical Segment type 0x80) added to the end of the
ForwardOpen request delivers the data from this tag to the device. Since the Data
Segment size specifies the number of bytes in words to follow CIP protocol, it adds an
extra byte for odd-sized entries in the module properties screen. A Data Segment can
send up to 400 bytes of configuration data.

CIP Routing
CIP routing information describes the network hops required to get from the originator
to the target. For more information, please refer to the Volume 1 of the CIP Networks
Library, “Appendix C: Data Management” as this document will not define the format of
this. If CIP Routing information is present in a ForwardOpen request, it immediately
precedes the Configuration Path, and contains the necessary Port Segments to traverse
hops between the controller and the target device.

ETHERNET-Bridge Profile
For modular devices that have a CIP backplane and resemble a remote ENBT in a
chassis, use the ETHERNET-BRIDGE profile. These devices contain an adapter (in
slot zero) with slots 1-99 available to insert a CIP Generic module. The ETHERNET-
BRIDGE profile provides support for modular devices and can achieve multiple
connections to a non-modular device if it can simulate a CIP backplane with slots.
With the exception of the Version 16 and earlier versions that do not have a “none”
communications format, it supports the same connection types as the ETHERNET-
MODULE (See the ETHERNET-MODULE Profile above).

Controller Tags Associated with Generic Devices
Each ETHERNET-MODULE or ETHERNET-BRIDGE inserted into the I/O tree
will result in the creation of tags in the controller’s tag database (Figure 6).

Organized according to function (e.g. Input data, Output data and Configuration Data),
the tag name is based on the module tag name entered in the Module Properties screen.
Using the example above, “Remote_Bridge:0” (the zero refers to the slot in the CIP Bus),
is followed by a “I”, “O” or “C”, and then an array “Data[n]”. The number of elements in
the array corresponds to the size entered in the Module Properties screen for this device.

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

Configuration Path

CIP Routing

ETHERNET-Bridge Profile

Controller Tags Associated
with Generic Devices

13



These tags resemble those created by the ETHERNET-MODULE profile although they
do not contain a slot number.

Figure 6 Creation of controller tags in the Logix5000 I/O Tree

I/O Using Tag I/O Data Exchange
Logix controllers provide the ability to exchange data through direct connections to
tags, known in Logix parlance as produced/consumed tags. This method of I/O data
exchange allows the exchange of tags (symbolic representations of data items) by
referencing the symbolic name instead of the assembly object instances, as described
earlier. Since no current mechanism can verify this, I/O data exchange assumes that
both ends of the data transfer understand the structure and content of the data
being transferred.

Figure 7 Configuring a Produced Tag in Logix5000

Controller Tags Associated
with Generic Devices

I/O Using Tag I/O Data
Exchange

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

14



A tag must be controller scope and of type “Produced” so another device can make a
connection to it (Figure 8 ) To request a produced tag connection with the Logix
controller, a device does not need to be in the controller’s I/O tree. The unidirectional,
produced tag connection does not provide controller status information (eg:
Run/Program mode).

Similarly, the user denotes a tag as a “Consumed Tag” during tag creation. Consumed
Tags require the user to enter the remote tag name and browse to the tag-producing
device, as shown in Figure 8. The producing device must be present in the Logix
controller’s I/O tree to be a consumed tag data source. See the sections above pertaining
to ETHERNET-MODULE and/or ETHERNET-BRIDGE for a description of how to
add a device to the I/O tree. The unidirectional Consume Tag connection does not
expect to receive controller status (e.g. Run/Program mode) from the producer.

Figure 8 Configuring a Consumed Tag in Logix5000

The event task allows users to implement COS behavior for consumed tags. For more
information about this task, please refer to the Rockwell Automation Support
Knowledge Base.

The only types of target I/O connections accepted by the Logix system are the produced
tag connection, and Input Only connection described in the EDS files of the Logix
controllers.

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

I/O Using Tag I/O Data
Exchange

15



The following connection restrictions apply when Logix acts as the target device:
• Only cyclic connection transport triggers will be accepted. Logix does not support

change-of-state and application-triggered connections.
• RPI must be at least 2 ms.
• Logix only accepts connections to a data entity with a tag name, not connection

points.
• Connections can be set up with O→T unicast and T→O as multicast or unicast when if

the target (producer) is a Logix controller V16, in RSLogix 5000 V16. If it is an
ETHERNET-MODULE the unicast option is grayed, in which case define the
producer as a Logix controller V16.

I/O Messaging Presumptions Made in Logix
Several connection settings implied within Logix cannot be changed, despite increased
freedoms allowed by CIP specifications. The following settings apply to controller-
originated connections such as consumed tag connections and I/O connections made
by devices in the I/O configuration tree:
• Only cyclic connections can be created. Logix does not support change-of-state and

application-triggered connections, with the exception of the consumed tags mentioned
above.

• RPI values are shown in ms with a resolution of 100 µs, even though the wire transmits
RPI values in µs.

• For Exclusive Owner connections, it uses the same RPI values for the O→T and T→O
directions, even though CIP allows setting them individually per direction.

• It chooses The Connection Timeout Multiplier to yield a resulting timeout of
at least 100 ms.

• For Input Only connections (with I/O Tree and I/O tag exchanges), the controller,
beginning in Version 16, adjusts the O-T RPI to slow the rate of heartbeat
transmissions. The controller selects a RPI and Connection Timeout Multiplier for
the O→T direction that yields an approximately two-second connection timeout.

• For Input Only connections, Logix chooses a Connection Timeout Multiplier for
the T→O side to establish a resulting timeout of at least 100 ms.

• Logix currently limits the RPI range to1.0-3,200.0 ms.
• By choosing a “… - with Status” connection, the status connection uses the same RPI

value as the I/O connection.
• To establish a connection, Logix sends three Connection Points in the ForwardOpen

Message, even if it has a zero length configuration size specified in the Module
Properties dialog. In this case it does not send configuration data with the
Forward_Open request either. Consumed tag connections use a symbolic segment,
which the I/O Tag Exchanges section discusses in greater detail.

• When creating a connection, Logix sends an empty Keying Segment that can neither
be switched off nor filled with values.

• Data in the O→T direction is sent unicast, while data in the T→O connection is sent
multicast for I/O connections. Beginning with Version 17, the user has the ability to
select unicast in the T→O direction for Produced and Consumed tags.

CIP does not define the behavior of multiple connections that have the same producing
target, although Logix behaves as follows:
• The first arriving connection has the requested RPI value(s).
• If the second connection comes in with a RPI value larger than the existing API value,

Logix accepts the connection and adjusts the returned API value for T→O to
the existing API.

I/O Using Tag I/O Data
Exchange

I/O Messaging
Presumptions Made
in Logix

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

16



• If the second connection comes in with a RPI value smaller than the existing API
value, Logix accepts the connection and adjusts the returned API value for T→O to the
new, smaller value. Existing connections with a larger RPI will receive the desired data
at a faster rate.

• When one of several existing connections goes way, the production rate of the target
data slows to the smallest API value of the remaining connections.

Length limitations of CIP data:
• I/O: 500 bytes for input data, 496 bytes for output data. They differ in length because

the output tag does not include the four bytes of real-time header. If the input data
from an adapter contains a real-time header, Logix treats these four bytes as typical
input data.

• Explicit messaging, connected: ~486 bytes sending/receiving
• Explicit messaging, unconnected: 502 bytes. When sending data the unconnected the

route path size must be subtracted (minimum 1 word), since EtherNet/IP includes the
IP address in ASCII format.

• Configuration data: 400 bytes
• Produced Tags: 500 bytes

Special behavior of CompactLogix™ and FlexLogix™ controllers:
When creating I/O or explicit connections, CompactLogix and FlexLogix controllers
accept the same RPI values as other Logix controllers and return the same values in the
API fields in the ForwardOpen response. They produce packets at an RPI rate that is an
integral power of two milliseconds, with a maximum of up to 1024. Since these
controllers use the highest possible value without exceeding the requested RPI, packet
rates can attain speeds nearly twice as fast as expected.

For explicit connections, this behavior affects the rate of sending duplicate packets to
keep the CIP connection alive. Default settings send duplicate packets every 1024 ms
instead of every 7500 ms.

Routing of I/O data:
Most I/O connections should be used within the local subnet. With the exception of
produced tags, I/O connections should be set up with a TTL value of “one.” These
routable, produced tags (RSLogix Version 14 and higher) should have a TTL value as
configured for the TCP/IP stack.

Further Design Considerations
Unconnected messaging functionality in the ControlLogix controller is intended
primarily to establish communication with other devices. Consequently, the use of
unconnected messaging for obtaining device information instead of using connected
messaging can result in slower establishment of I/O connections and slower messaging
overall. To maximize performance, use connected messaging wherever possible. This
requires that devices support connected messaging.

As a general rule, explicit communication requires greater care than I/O data, as
discussed in the explicit messaging section of this guide. Extensive use of this technique
impacts control performance in larger customer implementations where a controller

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

I/O Messaging
Presumptions Made
in Logix

Further Design
Considerations

17



communicates with several EtherNet/IP devices. Since transferring information over the
I/O channel is easier to use and more efficient, consider including parameters that an end
user might need to frequently read or write within an I/O connection. This helps
dedicate explicit messaging for infrequent configuration changes.

Planning your EtherNet/IP Implementation for successful integration with RSLogix
5000 software:
• When designing your EtherNet/IP interface, consider the user experience. Given the

different mechanisms for communicating with the device, these choices will impact
processor performance and how the user utilizes the device.

• Consider how the device may be used in a typical customer implementation. Would
the user be expected to configure a single device or multiple devices with a single
controller? In the latter scenario, a well-planned implementation ensures that the
processor effectively utilizes resources for explicit messaging.

• Consider the nature of the device’s data and the frequency of user access. Since users
regularly transfer data as required, data transfer should be included in the I/O channel.

• To ease integration and use processor resources most effectively, design the
EtherNet/IP interface to minimize explicit messaging during normal operation.
Product developers can accomplish this by placing as much information as possible in
the I/O channel, when they design their product.

• If the situation requires a significant amount of explicit messaging, consider designing
a vendor-specific “user data” CIP object that holds relevant information and can be
obtained using a single MSG instruction.

• To minimize the use of unconnected message buffers, implement connected messaging
functionality in the device.

To improve user experience and product integration with Logix controllers, consider
providing specific logic for EtherNet/IP communications. Logic can be implemented
using RSLogix 5000 Add-On Instructions, as well as HMI integration with FactoryTalk®
View software. The following pages provide an overview of the benefits and
implementation of Add-On Instructions and FactoryTalk View software, illustrated
with a case study.

EtherNet/IP Communication with Add-On Instructions
RSLogix 5000 Version 16 introduces the concept of reusable code objects called Add-On
Instructions (AOIs) (Figure 9). Designed to improve standardization and code reuse,
these instructions enable encapsulation of commonly used logic as sets of reusable
instructions.

Figure 9 Add-On Instructions in RSLogix 5000 software encapsulates logic to create sets
of reusable instructions

Further Design
Considerations

EtherNet/IP
Communication with
Add-On Instructions

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

18



Introduction –Why Add-on Instructions?
Vendors use Add-On Instructions with EtherNet/IP to set up communications between
a Logix Controller and their product with RSLogix 5000 software. By providing
Add-On Instructions with commonly used instructions for communications, users
can save time and increase consistency, while reducing errors and the need for technical
support. Add-On Instructions can also be used to enhance customization in the specific
application of products, or across a range of products with different features. Users tend
to utilize more features when provided with Add-On Instructions featuring full product
capability because it is easier to use.

The creation of a user-defined data type (UDT) that holds data relevant to the device
(Figure 10) serves as the basic principle behind this technique. The AOI code populates
the UDT. Implicit data from the input channel can be easily and directly copied to the
UDT, while placing explicit data in a UDT is more complex. Selecting appropriate
element names within the UDT presents device information in a format appropriate
for that device. The AOI provides the opportunity to process incoming data from the
EtherNet/IP object and present it in a meaningful format to the user. Similarly, output
information can be copied from a UDT to the output channel, and parameter changes
in the device can be made through the “Set Attribute Single” service.

Figure 10 UDT (User Defined Data Type) with Identity Object data

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

Introduction
Why Add-On Instructions?

19



Figure 11 shows a vendor authored AOI, with data input and output definition and AOI
code (in this case written in ladder logic).

Figure 11 Creating an Add-On Instruction – a vendor-authored instruction for
EtherNet/IP with implicit and explicit communication

Generic Benefits of Add-On Instructions
• Time Savings:

Encapsulating commonly used logic as a set of reusable instructions saves time.

• Improved Change Management:
Add-On Instructions share code throughout the controller and automatically
inherit modifications.

• Consistency:
Reusing instructions promotes consistency and reduces errors.

• Troubleshooting:
Context views help "visualize" the logic for a specific use and simplify troubleshooting.

• Protection:
Using the RSLogix 5000 source protection capability limits access to instructions and
stops unwanted changes with "view only" or "no access" status.

• Online Documentation:
Online integration helps distribute documentation instruction as part of the code
(Figure 12).

Introduction
Why Add-On Instructions?

Generic Benefits of
Add-On Instructions

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

20



Benefits when used in conjunction with EtherNet/IP include:
• Minimal configuration and messaging instruction setup (just Set and Get

MSG blocks)
• Removes the user requirement for device CIP implementation knowledge
• User-friendly presentation of explicit and implicit data
• Processing and presenting of data in meaningful format without any further

intervention
• The ability to handle large number of variants (such as a product range) with no

additional user input
• Ease of replication
• Add-On Instructions may be combined with RS View global objects to provide

pre-configured HMI screens or faceplates

Figure 12 Add-On Instruction help in RSLogix 5000 software

As a basis for object-oriented programming methodology, Add-On Instructions
encapsulate the code into pre-validated modules for easy reuse. Add-On Instructions may
be created using the Ladder Diagram (Figure 13), Function Block Diagram and
Structured Text editors available in RSLogix 5000 software.

Once created, the instructions may then be used in any of the RSLogix 5000
programming languages without additional effort. This feature of RSLogix 5000 does
not require additional software or licenses. Users can create and use add-on instructions
with RSLogix 5000 Version 16. If users have an earlier version of RSLogix 5000 software
that does not support AOI, using sample code achieves similar functionality. As with all
sample code, users should exercise care when replicating code for multiple instances of a
device.

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

Generic Benefits of
Add-On Instructions

21



Sometimes, it may be inappropriate or undesirable for end users to add or remove
functionality from the CIP interface code or AOI. Since CIP and AOI have a standard
application code, anyone can easily modify them without additional programming tools
or licenses. RSLogix 5000 security features can prevent the code from being viewed or
modified. For more information about RSLogix 5000 security features, please refer to the
product user manuals and the Logix security tool help.

Figure 13 AOI Ladder code used to move data into a UDT

Creating an AOI
For integration purposes, an AOI typically performs the following functions: transferring
data over the I/O channel and explicit messaging to obtain or set device parameters
together with the necessary data processing.

Working with implicit data on the I/O channel requires Copy (COP) or Move (MOV)
instructions to transfer data, as shown in Figure 14 and Figure 15.

Figure 14 Code to copy data from device input word to UDT

Generic Benefits of
Add-On Instructions

Creating an AOI

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

22



Figure 15 Code to copy data from UDT to device output word

Implicit data from the I/O channel and information from any CIP object can be
obtained through explicit messaging using the MSG instruction. Although multiple
MSG instructions can be configured to poll individual CIP objects, this approach
complicates AOI configuration and use, as well as places heavy demands on the
controller’s explicit message buffers. Alternatively, an AOI or code can be created to
acquire data from several CIP objects with the class, instance and attribute settings for
the MSG instruction changed after completion ready for the next scan of the program
(Figure 16). An input state, program condition or a timer can trigger CIP object
polling. For many continuous operations, the timer is the most appropriate option.
While timer-based messaging allows data to be read from several objects, it can also
lead to slow cycle times, particularly if several objects need to be interrogated in turn.
Polling CIP objects on a “condition based” basis uses controller resources more
effectively because it only triggers the MSG instruction when necessary. For example,
certain types of information can be obtained by pressing a control panel button, or
continuously retrieved by selecting the appropriate screen on an HMI system.

Figure 16 MSG instruction used to obtain data from multiple CIP objects

When designing the device, consider creating a single, vendor-specific CIP object that
contains relevant information an end user may require from the device. This allows users
to obtain device information through a single MSG instruction, which can contain large
quantities of information. This streamlines the data acquisition process while enhancing
programmer usability.

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

Creating an AOI

23



Steps to Building an AOI
1. Determine themost relevant data. Identify which device parameters and functions a

user wants to access or configure.

2. Determine the data’s location: which objects and whether the data is implicit or
explicit. If the I/O channel does not contain relevant information, determine which
objects contain the parameters of interest.

3. Create UDTs. Replicate the structure of the input and output channel, as well as
relevant objects as necessary (Figure 10). Combining several UDT instances into a
single structure can aid replication and ease integration with visualization tools.

4. Copy input image intoUDT.

5. If using explicit messaging, determine whether a time or condition-based polling
mechanism should be implemented. The nature of the device and type of data will
determine the most appropriate approach. For example, device-specific information
will not change unless the unit is disconnected. A disconnected device has a single poll
of the identity object following a status change, which may be sufficient. A time-based
polling mechanism may be most appropriate for other parameters, such as the device’s
continuously changing CPU temperature. As stated previously, avoid time-based
polling in order to best utilize processor resources.

6. Configuremessage instructions – to ease user configuration, use onemessage per
CIP service. Using a single MSG instruction for multiple objects (Figure 16) further
streamlines configuration.

Since a MSG instruction needs to be configured each time a user creates an AOI, users
should utilize as few MSG blocks as possible. To accomplish this, set up one MSG block
for each service. For example, configure one MSG with the “Get Attribute All” service
and another as “Set Attribute Single.” Class, Instance and Attribute values can then be set
within the AOI code. Although creating an AOI requires additional programming effort,
it simplifies AOIs and eases use.

7. Copy explicit data into aUDT. The MSG instructions should be configured to read
the data received from the device as a temporary storage array. To move data in this
storage array into an instance of the UDT, use MOV and COP instructions (Figure 14
& Figure 15).

8. Evaluate raw data and providemeaningful information to user. Data received from
the device may not be in the most user-friendly format, so processing may be necessary.
For example, users could byte swap devices using the big-endian format or configure a
MAC address into a user-readable character string.

9. Configure secondmessage with “Set Attribute All” service to set necessary
device parameters.

10. Copy data fromUDT to output image.

11. Prepare online documentation. Ensure sufficient information is entered in the
online help file for the AOI. The file also can include contact details for support
purposes.

Steps to Building an AOI

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

24



12. Set security settings for AOI. Determine whether the code in the AOI should be
invisible, visible but locked, or open to all for viewing and modification.

13. Make your AOI available to customers. Approaches include downloading from
vendor Web sites and uploading a vendor sample code to the Rockwell Automation
sample code site. Sample files for RSLogix 5000 and FactoryTalk® View softwarecan
be found here: http://samplecode.rockwell.com.

For more information, videos and tutorials for add-on instructions as well as other
features in Version 16, visit the Integrated Architecture™ Tools Web page at
www.rockwellautomation.com/go/v16tj.

Integration with FactoryTalk View Software
Creating and populating a UDT allows users to utilize global objects in FactoryTalk
View. Instances of these pre-prepared screens can be created within a FactoryTalk View
package (Figure 17). Since the RSLogix 5000 tag database has pre-defined links, user
configuration is limited to providing a path that indicates the specific device instance
within a parameter file. At run-time, the screens are identified by the parameter file and
transfer data with the UDT. Like sample code and AOI, users can easily customize these
global objects.

Figure 17 FactoryTalk View global objects provide pre-configured HMI screens

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

Steps to Building an AOI

Integration with
FactoryTalk View Software

25



Appendix A – Accessing Tags in a Logix Controller
As mentioned previously, tags are how ControlLogix organizes data. The section “Data
Organization in the Controller” discusses the types of tags and resources for where more
detailed information can be found.

To access data in the controller CIP services are used with the same symbolic names given to the
data in the controller. This is accomplished using one or more ANSI Extended Symbolic
Segments to replace the typical CIP address information that uses three Logical Segments (one
for Class ID, one for Instance ID and one for Attribute ID). Table 1 shows the encoding of an
ANSI Extended Symbolic segment.

Note: For more information on the CIP-defined ANSI Extended Symbolic Segments and all
Logical Segments shown here, refer to Appendix C of reference [8].

Table 1 ANSI Extended Symbolic Segment Encoding

Type of Logical Segment Segment Type Byte order representation (low byte first)

ANSI Extended Symbolic 0 1 … n n+1

0x91 length 1st char … nth char *

* optional pad byte (00) when length of string (length) is odd.

When a service references a dimensioned tag (eg: an array), the array members are referenced
using a member ID. Table 2 shows the three types of Logical Segments used to to specifiy the
array dimensions. There may be one, two or three Member ID segments used to address
individual elements of a dimensioned tag; for one, two or three dimension arrays, respectively.
Member IDs are also used to reference members of a structured tag.

Table 2 Member ID Logical Segments Used to Access Arrays and Structures in Logix

Type of Logical Segment Segment Type Byte order representation (low byte first)

0 1 … n n+1

8-bit Element ID 0x28 ee n/a n/a n/a n/a

16-bit Element ID 0x29 00 ee (LSB) ee (MSB) n/a n/a

32-bit Element ID 0x2A 00 ee (LSB) ee ee ee (MSB)

More details of accessing tags can be found in the Logix Data Access Manual, reference [1].

Appendix A

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

26



Glossary

(Rockwell Automation terms only – for other terms see EtherNet/IP
Developers Guide [9])

Add-on Instruction (AOI)
Add-on instructions (or AOIs) are reusable code objects introduced in Rockwell
Software RSLogix 5000 Version 16. These instructions enable encapsulation of
commonly used logic as sets of reusable instructions. Add-on instructions are created
using the Ladder Diagram (Figure 9), Function Block Diagram and Structured Text
editors available in RSLogix 5000 software.

Copy File (COP) Instruction
The Copy File (COP) instruction copies the value(s) in the source to the destination.
The source remains unchanged.

Message (MSG) Instruction
The message (MSG) instruction asynchronously reads or writes a block of data to
another module on a network.

Move (MOV) Instruction
The Move (MOV) instruction copies the source to the destination.

The Source remains unchanged.

User-definedData Type (UDT)
A UDT is a software structure consisting of different elements and the
communication channel.

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

Glossary

27



References
[1] Logix5000 Data Access Manual, available from:
http://www.rockwellautomation.com/enabled/guides.html

[2] Type Encoding of Logix Structures in CIP Data Table R/W, available from:
http://www.rockwellautomation.com/enabled/guides.html

[3] DF1 Protocol and Command Set Reference Manual, available from:
http://www.rockwellautomation.com/enabled/guides.html

[4] Delivery of CIP Over RA Serial DF1 Networks, available from:
http://www.rockwellautomation.com/enabled/guides.html

[5] Communicating with Rockwell Automation Products Using EtherNet/IP Explicit
Messaging, available from: http://www.rockwellautomation.com/enabled/guides.html

[6] I/O Communications with the ControlLogix controller on EtherNet/IP, available
from http://www.rockwellautomation.com/enabled/guides.html

[7] Logix5000 Controllers I/O and Tag Data, Publication:
1756-PM004A-EN-P available from:
http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-
pm004_-en-p.pdf

[8] Volume 1 of the CIP Networks Library, “The Common Industrial Protocol
Specification”, available from ODVA (http://www.odva.org)

[9] Volume 2 of the CIP Networks Library, “The EtherNet/IP Adaptation of CIP”,
available from ODVA (http://www.odva.org)

[10] CIP eTraining Classroom CD, available from Rockwell Automation Technologies:
http://www.rockwellautomation.com/enabled/cipetraining.html

[11] EtherNet/IP Developers Guide, available from ODVA (http://www.odva.org)

References [1] through [6] can be downloaded for free from the Rockwell Automation
Web site; reference [8] and [11] are available from ODVA. Reference [10] can be
purchased from Rockwell Automation.

CompactLogix, ControlLogix, FactoryTalk, FlexLogix, Integrated Architecture, Logix5000, PLC-5, Rockwell
Software and RSLogix are trademarks of Rockwell Automation Inc.

CIP, DeviceNet and EtherNet/IP are trademarks of ODVA.

ControlNet is a trademark of ControlNet International Ltd.

References

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

28



Developer Resources
Education

ODVA
• Classroom Training http://www.odva.org

• Essential EtherNet/IP Developer Guide http://www.odva.org

• EtherNet/IP Informational Seminars - Global http://www.odva.org

• EtherNet/IP Library (Publication 100, General Recommendations for
EtherNet/IP Developers) http://www.odva.org

• EtherNet/IP Implementors Workshops (advanced topics workshop) –
North America / Europe http://www.odva.org

Others
• IXXAT – Classroom Training – Europe http://www.ixxat.de/ethernet_

ip-seminar_de,812,147.html

• Pyramid - Training http://www.pyramidsolutions.com/network-connectivity-
solutions-and-services.html

• Rockwell Automation – eCIP Training CD
http://www.rockwellautomation.com/enabled/cipetraining.html

Implementation
Rockwell Automation recognized Value Added Design Partners with Enabling
Technologies

• IXXAT Gmbh - Adapter and Scanner Software, Freescale/Coldfire EtherNet/IP,
Netsilicon Net+Arm http://www.ixxat.de

• Nippon System Development Ltd. – Adapter and Scanner Software
http://www.nsd.co.jp

• Online Development Inc. – Adapter and Scanner Software http://www.oldi.com

• Pyramid Solutions, Inc. - NetStaX (suite of EtherNet/IP developer kits and tools)
http://www.pyramidsolutions.com

• SoftDel Systems, Ltd. – Adapter and Scanner Software, DELCIP middleware
http://www.softdel.com

• Softing AG. – Adapter Portable Protocol Software and FPGA-based Hardware
Integration http://softing.com

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

References

29



CIP Safety Design Assistance and Enabling Technology
• Molex - Woodhead Software and Electronics http://www.woodhead.com

Other Enabling Technologies
• Tata Elxsi – CIP stack implementation http://www.talaelxsi.com

• NetModule – EtherNet/IP Stack for Siemens/NEC ERTEC 200 and 400 Profinet
controllers http://www.netmodule.com/en/products/ethip/

• Deutschmann Automation – Unidgate IC http://www.deutschmann.de

• Fieldserver – Protocessor Protocol Modules http://www.protocessor.com

• Grid Connect LX and EX chips http://www.gridconnect.com

• Hilscher – NetX http://www.hilscher.com/netx.html

• HMS – Anybus M, Anybus S, Anybus CompactCom http://www.anybus.com

• HMS – Anybus IC
http://www.anybus.com/eng/products/products.asp?PID=90&
ProductType=AnyBus-IC

• ODVA – Example Source Code (Public) http://www.odva.org

• Real-Time Automation – EtherNet/IP Modbus/TCP Board Level Gateway
http://www.rtaautomation.com

• Real-Time Automation – 510 E Embedded Module and Source Code Stacks
http://www.rtaautomation.com

• Smart Network Devices – 4NetOS and HyperstoneOS http://www.smartnd.com

Tools

ODVA
• EZ-EDS (EDS authoring tool) http://www.odva.org

• EDS Authenticator Software Tool http://www.odva.org

• Protocol Conformance Test Software Tool (also check device functionality during
development) http://www.odva.org

Others
• Frontline Test Equipment – FTS4Control (Protocol Analyzer)

http://www.fte.com/products/FTS4Control-01.asp

• IXXAT – EtherNet/IP Scanner Simulation Tool (EIP Scan) http://www.ixxat.de

References

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

30



• Pyramid Solutions, Inc. – EtherNet/IP Scanner Simulation Tool (EIPScan)
http://www.pyramidsolutions.com

• Pyramid Solutions, Inc. – EtherNet/IP Device Interoperablity Test Tool (EDITT)
http://www.pyramidsolutions.com

• Wireshark – Free Ethernet Analyzer http://www.wireshark.org

Testing

Conformance Test Centers
• ODVA (Michigan / North America) http://www.odva.org

• ASTEM RI (Japan / Asia Pacific) http://securesite.jp/ODVA/english

• University of Magdeburg (Germany / Europe) http://lamp.urz.uni-
magdeburg.de/~wiaf/lfp/cvs/home_ethernet_eng.php

Other
• Plug Fests (Interoperability Testing) http://www.odva.org

INTEGRATIONWITH CONTROLLOGIX PROGRAMMABLE AUTOMATION CONTROLLERS (PACS) USING ETHERNET/IP

References

31



November 2008 Copyright ©2008 Rockwell Automation, Inc. All Rights Reserved. Printed in USA.




